A Competing Risks Approach to Analyzing Post–COVID-19 Reemployment among White-Collar Workers: Lessons from Indonesia

Joseph Christoffel, Octavia Rogate Hutagaol, Ana Uluwiyah, Eni Lestariningsih

Abstract

Despite the recovery trend in the labor market after the scarring effects caused by the pandemic, the share of white-collar workers remains below pre-pandemic levels. This study aims to analyze the determinants of reemployment among individuals who exited the workforce due to COVID-19, with a specific focus on differences between white-collar and blue-collar workers. We use micro data from the August 2022 National Labor Force Survey (Sakernas) and employ a survival analysis with the Fine and Gray competing risks model to estimate the subdistribution hazard ration (SHR) for each covariate such as gender, living area, education, and age. The results show that individuals living in urban areas, with post-secondary education, younger age (15–30 years), previous white-collar work experience, and participation in training programs have a significantly higher likelihood of reemployment in white-collar occupations. Conversely, blue-collar reemployment is more likely among those with lower education, rural residence, head-of-household status, previous blue-collar work experience and unmarried individuals. This research emphasizes the importance of investing in human capital and post secondary education for maximizing white-collar jobs reabsorption.

Full text article

Generated from XML file

References

Adams-Prassl, A., Boneva, T., Golin, M., & Rauh, C. (2020). Inequality in the impact of the coronavirus shock: Evidence from real time surveys. Journal of Public Economics, 189, 104245. https://doi.org/10.1016/J.JPUBECO.2020.104245
Agusalim, L., Siregar, H., Anggraeni, L., & Mulatsih, S. (2025). Unveiling the Profile of Low-Wage Workers in Indonesia. Jurnal Ketenagakerjaan, 20(1). https://doi.org/10.47198/naker.v20i1.471
Ahituv, A., & Lerman, R. (2011). Job Turnover, Wage Rates, and Marital Stability: How Are They Related? Review of Economics of the Household, 9, 221–249.
Anggarini, D. T., & Rakhmanita, A. (2020). Government Policies for Economic Recovery and Handling COVID-19 Virus in Indonesia. Jurnal Akuntansi Dan Keuangan, 7(2). http://ejournal.bsi.ac.id/ejurnal/index.php/moneter140
Arntz, M., Gregory, T., & Zierahn, U. (2016). The Risk of Automation for Jobs in OECD Countries (OECD Social, Employment and Migration Working Papers, Vol. 189). https://doi.org/10.1787/5jlz9h56dvq7-en
BPS. (2020). Keadaan Ketenagakerjaan Indonesia Agustus 2020.
BPS. (2021). Pertumbuhan Ekonomi Indonesia Triwulan IV-2020.
BPS. (2022). Labor Force Situation in Indonesia August 2022.
Coviello, V., & Boggess, M. (2004). Cumulative incidence estimation in the presence of competing risks. In The Stata Journal (Vol. 4, Issue 2).
Dartanto, T., Susanti, H., Augustin, E., & Fitriani, K. (2023). Reemployment during the Covid-19 pandemic in Indonesia: What kinds of skill sets are needed? Cogent Economics and Finance, 11(2). https://doi.org/10.1080/23322039.2023.2210382
Farihah, R., & Utomo, A. P. (2024). Analysis of Millennial Unemployment Among Higher Education Graduates in West Java in 2022. Jurnal Ketenagakerjaan, 19(2), 233–248. https://doi.org/10.47198/jnaker.v19i2.358
Huertas, I. P. M., & Raymond, J. L. (2024). Education, educational mismatch and occupational status: an analysis using PIAAC data. Economia Politica, 41(3), 717–738. https://doi.org/10.1007/s40888-024-00328-z
ILO. (2021). Trends ILO Flagship Report World Employment and Social Outlook.
Kemenparekraf, & BPS. (2024). Statistik Tenaga Kerja Pariwisata dan Ekonomi Kreatif 2019–2023.
Kleinbaum, D. G., & Klein, M. (2012). Statistics for Biology and Health Survival Analysis A Self-Learning Text Third Edition. http://www.springer.com/series/2848
Lau, B., Cole, S. R., & Gange, S. J. (2009). Competing risk regression models for epidemiologic data. American Journal of Epidemiology, 170(2), 244–256. https://doi.org/10.1093/aje/kwp107
Lee, Y. J. (2022). Lingering Male Breadwinner Norms as Predictors of Family Satisfaction and Marital Instability. Social Sciences, 11(2). https://doi.org/10.3390/socsci11020049
Lestari Widarni, E., & Bawono, S. (2021). Human Capital, Technology, and Economic Growth: A Case Study of Indonesia. Journal of Asian Finance, 8(5), 29–0035. https://doi.org/10.13106/jafeb.2021.vol8.no5.0029
Mavridis, D. (2015). The unhappily unemployed return to work faster. IZA Journal of Labor Economics, 4(1). https://doi.org/10.1186/s40172-014-0015-z
Natalia, C., Shasta Pratomo, D., & Syafitri, W. (2024). What Drives Blue-Collar Workers Transition in The Labor Market Dynamics? Lesson Learned from Indonesia. Jurnal Ekonomi Dan Studi Pembangunan, 16(1), 12. https://doi.org/10.17977/um002v16i22024p1
Niati, D. R., Siregar, Z. M. E., & Prayoga, Y. (2021). The Effect of Training on Work Performance and Career Development: The Role of Motivation as Intervening Variable. Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences, 4(2), 2385–2393. https://doi.org/10.33258/birci.v4i2.1940
Ningsih, Y. S., & Dokhi, M. (2021). Determinant of Labor Force Resilience Against the Employment Impact of the Covid-19 Pandemic in Bali Province, Indonesia: An Application of Survival Analysis.
OECD. (2021). Training in Enterprises. OECD Publishing. https://doi.org/10.1787/7d63d210-en
OECD. (2024). Education at a Glance 2024. OECD Publishing. https://doi.org/10.1787/c00cad36-en
Olivia, S., Gibson, J., & Nasrudin, R. (2020). Indonesia in the Time of Covid-19. Bulletin of Indonesian Economic Studies, 56(2), 143–174. https://doi.org/10.1080/00074918.2020.1798581
Prasetio, D. E., Masnun, M. A., Nugroho, A., Ikram, D., & Noviyanti. (2024). Discrimination Related to Labour Age Limitation in Indonesia: A Human Rights and Comparative Law Perspective. Jurnal Suara Hukum, 6(2), 228–254. https://doi.org/10.26740/JSH.V6N2.P228-254
Putri, F. A. (2023). Peran Program Kartu Prakerja Terhadap Penciptaan Kewirausahaan di Era Pandemi Covid-19. Bappenas Working Papers, 6(2), 182–195. https://doi.org/10.47266/bwp.v6i2.186
Ragasa, C., Balakasi, K., & Carrillo, L. (2022). Resilience in the Malawi Agri-food System Amid the COVID-19 Crisis Evidence from a 2021 nationally representative household survey. https://www.ifpri.org/project/pluralistic-extension-system-malawi
Schröder, C., Entringer, T., Goebel, J., Grabka, M. M., Graeber, D., Kroh, M., Kröger, H., Kühne, S., Liebig, S., Schupp, J., Seebauer, J., & Zinn, S. (2020). Covid-19 is not affecting all working people equally. http://www.diw.de/soeppapers
Siddiq, F., & Dokhi, M. (2022). Survival Analisis Durasi Menganggur Angkatan Kerja Disabilitas yang Mengalami Berhenti Bekerja Akibat Pandemi Covid-19. Jurnal Statistika Dan Aplikasinya, 6(2), 326.
Snell, D., & Gekara, V. (2023). Re-examining technology’s destruction of blue-collar work. New Technology, Work and Employment, 38(3), 415–433. https://doi.org/10.1111/ntwe.12259
Söderqvist, C. F. (2024). Essays on exit, voice, and technology Industrial relations in modern Swedish labor markets. Blekinge Institute of Technology.
Torre, M. (2019). Women in Blue: Structural and Individual Determinants of Sex Segregation in Blue-Collar Occupations. Gender and Society, 33(3), 410–438. https://doi.org/10.1177/0891243219830974
Venancio, F. A., Ann, J., Quinte, D., Teresa, B., & Sengco, S. (2024). Blue-Collar Workers: Study on Physically Demanding Jobs. Psych Educ, 2024(3), 2024–1660. https://doi.org/10.5281/zenodo.10875909
Yamali, F. R., & Putri, R. N. (2020). Dampak Covid-19 Terhadap Ekonomi Indonesia. Ekonomis: Journal of Economics and Business, 4(2), 384. https://doi.org/10.33087/ekonomis.v4i2.179

Authors

Joseph Christoffel
joseph@bps.go.id (Primary Contact)
Octavia Rogate Hutagaol
Ana Uluwiyah
Eni Lestariningsih
Christoffel, J., Hutagaol, O. R., Uluwiyah, A. and Lestariningsih, E. (2025) “A Competing Risks Approach to Analyzing Post–COVID-19 Reemployment among White-Collar Workers: Lessons from Indonesia”, Jurnal Ketenagakerjaan, 20(2), pp. 186–200. doi: 10.47198/jnaker.v20i2.584.

Article Details