Analysis of Labor Force Participation Rate in Riau Province: A Spatial Autoregressive Approach

Arisman Adnan, Gustriza Erda, Tesa Theresia Sirait

Abstract

The labor force participation rate (LFPR) is one of the important indicators for measuring the participation of the labor force involved in economic activities. In Riau Province, LFPR has exceeded half the population, resulting in increasingly tight job competition. This research aims to model the factors influencing LFPR in Riau Province in 2021 using the Spatial Autoregressive Model (SAR). Based on the Moran Index, there is positive spatial autocorrelation in LFPR, while based on the Lagrange Multiplier test, the SAR model is appropriate to use because of the lag dependence on the dependent variable. SAR analysis shows that the non-labor force variables (????1), poverty line (????2), productive age population (15-64 years) (????3), and population growth rate (????4) have a significant positive influence on LFPR. In contrast, the type ratio variable gender (????5) has a negative influence. Apart from that, a lag coefficient of 0.4935 was obtained, which means that if the value of the LFPR figure in a region increases by 1 unit, it will increase by 0.4935 times the average LFPR in neighboring areas of the region. This highlights the need for policies aimed at increasing the LFPR to account for regional coordination, as changes in one area's LFPR can influence adjacent regions. Consequently, the Riau Provincial Government should promote collaboration among districts and cities to formulate a cohesive strategy, while each district should design policies that align with their unique local characteristics and the spatial dynamics of surrounding areas.

Full text article

Generated from XML file

References

Aaronson, S., Cajner, T., Fallick, B., Galbis-Reig, F., Smith, C., & Wascher, W. (2014). Labor Force Participation: Recent Developments and Future Prospects. Brookings Papers on Economic Activity, 197–275. https://doi.org/https://doi.org/10.1353/eca.2014.0015
Ahn, H. J., & Hamilton, J. D. (2022). Measuring labor-force participation and the incidence and duration of unemployment. Review of Economic Dynamics, 44, 1–32. https://doi.org/10.1016/j.red.2021.04.005
Annazah, N.S (2021). Faktor-faktor yang Mempengaruhi Wanita Menikah Berusia Produkti Untuk Bekerja Tahun 2019 (Studi Kasusu Propinsi Jawa Barat). Jurnal Ketenagakerjaan, 16(1), 61-74.
Anselin, L. (1988). The Scope of Spatial Econometrics (pp. 7–15). https://doi.org/10.1007/978-94-015-7799-1_2
Badan Pusat Statistik. (2021). Indikator kesejahteraan rakyat Provinsi Riau 2021. BPS Provinsi Riau.
Bawazir, A. A., Osman, A. F., & Aslam, M. (2022). Factors Affecting Female Labor Force Participation in the Middle East: An Empirical Evidence from Panel Data Approach. The Journal of Developing Areas, 56(1), 59–72. https://doi.org/10.1353/jda.2022.0010
Budiyanto, E. (2010). Sistem informasi geografis dengan ArcView GIS. Penerbit Andi.
Copiello, S., & Coletto, S. (2023). The Price Premium in Green Buildings: A Spatial Autoregressive Model and a Multi-Criteria Optimization Approach. Buildings, 13(2), 276. https://doi.org/https://doi.org/10.3390/buildings13020276
Hakimzai, S. N. (2022). Analyzing female labor force participation in Afghanistan: Panel data approach. Turkish Economic Review, 9(4), 309–323. https://doi.org/https://doi.org/10.1453/ter.v9i4.2386
Huang, H., Abdel-Aty, M. A., & Darwiche, A. L. (2010). County-Level Crash Risk Analysis in Florida: Bayesian Spatial Modeling. Transportation Research Record: Journal of the Transportation Research Board, 2148(1), 27–37. https://doi.org/10.3141/2148-04
Jibril, H. T., Susilo, S., & Sakti, R. K. (2022). Pemodelan tingkat pengangguran di Indonesia dengan random effect spasial autoregression (Sar-Re). JPPI (Jurnal Penelitian Pendidikan Indonesia), 8(4), 1090. https://doi.org/10.29210/020221721
Juniar, D., & Ulinnuha, M. (2020). Pemodelan Spatial Autoregressive (SAR) untuk persentase penduduk miskin di Jawa Barat tahun 2018. Variansi, 2, 67–76.
Krueger, A. B. (2017). Where Have All the Workers Gone?: An Inquiry into the Decline of the U.S. Labor Force Participation Rate. Brookings Papers on Economic Activity, 2017(2), 1–87. https://doi.org/10.1353/eca.2017.0012
Lesage, J. (1999). The Theory and Practice of Spatial Econometrics. University of Toronto.
Nazah, N., Duasa, J., & Arifin, M. I. (2021). Fertility and Female Labor Force Participation in Asian Countries; Panel ARDL Approach. Jurnal Ekonomi & Studi Pembangunan, 22(2), 272–288. https://doi.org/10.18196/jesp.v22i2.11142
Qiu, B., Zhou, M., Qiu, Y., Liu, S., Ou, G., Ma, C., Tu, J., & Li, S. (2022). An Integrated Spatial Autoregressive Model for Analyzing and Simulating Urban Spatial Growth in a Garden City, China. International Journal of Environmental Research and Public Health, 19(18), 11732. https://doi.org/https://doi.org/10.3390/ijerph191811732
Rahmawati, D., & Bimanto, H. (2021). Perbandingan Spatial Autoregressive Model dan Spatial Error Model dalam Pemodelan Indeks Pembangunan Manusia di Provinsi Jawa Timur. Jurnal Statistika Dan Aplikasinya, 5(1), 41–50. https://doi.org/10.21009/JSA.05104
Suryowati, K., Bekti, R., Fajiriyah, R., & Siswoyo, E. (2021). The Effect of Regional Characteristics and Relationship Among Locations In Air Pollution Using Spatial Autoregressive (SAR) and Spatial Durbin Models (SDM). Journal of Physics: Conference Series, 1776(1), 012051. https://doi.org/10.1088/1742-6596/1776/1/012051
Ver Hoef, J. M., Peterson, E. E., Hooten, M. B., Hanks, E. M., & Fortin, M. (2018). Spatial autoregressive models for statistical inference from ecological data. Ecological Monographs, 88(1), 36–59. https://doi.org/10.1002/ecm.1283
Yanuar, F., Abrari, T., & HG, I. R. (2023). The Construction of Unemployment Rate Model Using SAR, Quantile Regression, and SARQR Model. Pakistan Journal of Statistics and Operation Research, 447–458. https://doi.org/10.18187/pjsor.v19i3.4241
Yasin, H., Hakim, A., & Warsito, B. (2020). Regresi Spasial (aplikasi dengan R). Wade Group.

Authors

Arisman Adnan
arisman.adnan@lecturer.unri.ac.id (Primary Contact)
Gustriza Erda
Tesa Theresia Sirait
Adnan, A., Erda, G. and Sirait, T. T. . . (2024) “Analysis of Labor Force Participation Rate in Riau Province: A Spatial Autoregressive Approach”, Jurnal Ketenagakerjaan, 19(3), pp. 382–392. doi: 10.47198/jnaker.v19i3.345.

Article Details